Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover.

نویسندگان

  • John Street
  • Min Bao
  • Leo deGuzman
  • Stuart Bunting
  • Franklin V Peale
  • Napoleone Ferrara
  • Hope Steinmetz
  • John Hoeffel
  • Jeffrey L Cleland
  • Ann Daugherty
  • Nicholas van Bruggen
  • H Paul Redmond
  • Richard A D Carano
  • Ellen H Filvaroff
چکیده

Several growth factors are expressed in distinct temporal and spatial patterns during fracture repair. Of these, vascular endothelial growth factor, VEGF, is of particular interest because of its ability to induce neovascularization (angiogenesis). To determine whether VEGF is required for bone repair, we inhibited VEGF activity during secondary bone healing via a cartilage intermediate (endochondral ossification) and during direct bone repair (intramembranous ossification) in a novel mouse model. Treatment of mice with a soluble, neutralizing VEGF receptor decreased angiogenesis, bone formation, and callus mineralization in femoral fractures. Inhibition of VEGF also dramatically inhibited healing of a tibial cortical bone defect, consistent with our discovery of a direct autocrine role for VEGF in osteoblast differentiation. In separate experiments, exogenous VEGF enhanced blood vessel formation, ossification, and new bone (callus) maturation in mouse femur fractures, and promoted bony bridging of a rabbit radius segmental gap defect. Our results at specific time points during the course of healing underscore the role of VEGF in endochondral vs. intramembranous ossification, as well as skeletal development vs. bone repair. The responses to exogenous VEGF observed in two distinct model systems and species indicate that a slow-release formulation of VEGF, applied locally at the site of bone damage, may prove to be an effective therapy to promote human bone repair.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Angiogenesis and endothelial cell repair in renal disease and allograft rejection.

This review discusses the concept that the turnover and replacement of endothelial cells is a major mechanism in the maintenance of vascular integrity within the kidney. CD133+CD34+KDR+ endothelial cell progenitor cells emigrate from the bone marrow and differentiate into CD34+KDR+ expressing cells, which are present in high numbers within the circulation. These progenitor cells are available f...

متن کامل

Vascular Endothelial Growth Factor from Embryonic Status to Cardiovascular Pathology

Vascular endothelial growth factor (VEGF) is a multifunctional cytokine with distinct functions in angiogenesis, lymphangiogenesis, vascular permeability, and hematopoiesis. VEGF is a highly conserved, disulfide-bonded dimeric glycoprotein of 34 to 45 kDa produced by several cell types including fibroblasts, neutrophils, endothelial cells, and peripheral blood mononuclear cells, particularly T ...

متن کامل

Capillary Network Formation by Endothelial Cells Differentiated from Human Bone Marrow Mesenchymal Stem Cells

Human bone marrow derived mesenchymal stem cells (HBMSCs) have the potential to differentiate into cells such as adipocyte, osteocyte, hepatocyte and endothelial cells. In this study, the differentiation of hBMSCs into endothelial like-cells was induced in presence of vascular endothelial growth factor (VEGF) and insulin-like growth factor (IGF-1). The differentiated endothelial cells were exam...

متن کامل

Locally applied vascular endothelial growth factor A increases the osteogenic healing capacity of human adipose-derived stem cells by promoting osteogenic and endothelial differentiation.

Human adipose-derived stem cells (hASCs) are known for their capability to promote bone healing when applied to bone defects. For bone tissue regeneration, both sufficient angiogenesis and osteogenesis is desirable. Vascular endothelial growth factor A (VEGFA) has the potential to promote differentiation of common progenitor cells to both lineages. To test this hypothesis, the effects of VEGFA ...

متن کامل

Correlation Between Soluble Vascular Endothelial Growth Factor A, Its Receptor 1 And Response To Chemotherapy In Acute Leukemia In Children

  Background and Objective: Vascular endothelial growth factor (VEGF) and its receptors (VEGF-R1 and R2) are major regulators of angiogenesis. This study was designed to assess serum levels of VEGF and VEGF-R1 and their prognostic significance in newly diagnosed childhood acute leukemia. Materials and Methods: For this purpose, VEGF and VEGF-R1 were determined using enzyme linked immuno-sorba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 15  شماره 

صفحات  -

تاریخ انتشار 2002